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Abstract
Economic analysis of effective policies for managing epidemics requires an inte-

grated economic and epidemiological approach. We develop and estimate a spatial,
micro-founded model of the joint evolution of economic variables and the spread of
an epidemic. We empirically discipline the model using new U.S. county-level data on
health, mobility, employment outcomes, and non-pharmaceutical interventions (NPIs)
at a daily frequency. Absent policy or medical interventions, the model predicts an
initial period of exponential growth in new cases, followed by a protracted period of
roughly constant case levels and reduced economic activity. Nevertheless, if vaccine
development proved impossible, and suppression cannot entirely eradicate the disease,
a utilitarian policymaker cannot improve significantly over the laissez-faire equilib-
rium by using lockdowns. Conversely, if a vaccine will arrive within two years, NPIs
can improve upon the laissez-faire outcome by dramatically decreasing the number of
infectious agents and keeping infections low until vaccine arrival. Mitigation measures
that reduce viral transmission (e.g., mask-wearing) both reduce the virus’s spread and
increase economic activity.
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1 Introduction
The rapidly developing COVID-19 pandemic presents perhaps the most daunting challenge
to economic policymakers since the Great Depression. By engaging in economic activity,
individuals subject themselves to infection risk, while infected agents impose negative exter-
nalities on others by spreading the virus. In the absence of a vaccine or cure, policymakers
can combat the virus’s spread only through “non-pharmaceutical interventions” (NPIs) (e.g.,
recommending social distancing, stay-at-home orders). While NPIs may effectively slow the
rate of new infections, they do so primarily by reducing economic activity. Alternatively,
allowing the virus to propagate unchecked may also entail economic costs, as rational agents
will mitigate their exposure to life-threatening risks. Formulating a sound policy response to
the pandemic thus requires quantifying the tradeoffs between health and economic activity,
as well as accurate predictions of both economic and epidemiological variables in response
to alternative policies. Managing an epidemic thus requires an integrated assessment model,
combining economics and epidemiology and rigorously disciplined by data, analogous to
the integrated climate-economic models for evaluating policies to combat climate change
(Nordhaus, 1993).1

This paper develops and estimates a parsimonious model of the joint determination of
epidemiological and economic variables in an epidemic. We call our framework an “economic
SIR” (Econ-SIR) model. The model features optimizing agents who endogenously respond
to changes in both infection risk and NPIs. The framework nests the standard SIR model
(Kermack and McKendrick, 1927) as the special case of a zero infection cost. When the
infection cost is sufficiently high, the model endogenously gives rise to two phases of virus
spread, with new infections initially growing exponentially before transitioning to a period of
approximately linear growth. The virus’s effective replication rate in the quasi-linear regime
is just below one, leading to protracted dynamics of decreased economic activity and roughly
constant spread of the virus.

While others have concurrently and independently formulated similar models (e.g., Broth-
erhood et al. (2020); Farboodi et al. (2020); Keppo et al. (2019); Toxvaerd (2020)), this paper
is the first to formally bring such a model to the data to identify the extent to which the real
world demands the Econ-SIR’s divergence from pure epidemiological models. We develop a
novel estimation approach to fit the model to a panel of daily economic and epidemiological
data for approximately 1000 U.S. counties, covering over 80 percent of the U.S. population.
Through revealed preference, we quantify both the disutility of contracting the disease and
the economic consequences of mitigation policies—the two key trade-offs for policy analysis.

1We thank Per Krusell for suggesting this analogy.
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Figure 1: Clockwise from upper left: new reported COVID-19 cases, new reported COVID-19
deaths, hours worked and economic activity. In each panel, red lines are population-weighted
means, the thick blue lines are the median county, and the light blue regions demarcate deciles
of the distribution across counties (all of these statistics computed pointwise).
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Our results highlight the importance of using an integrated assessment model for analyz-
ing policy responses to epidemics, as the endogenous mitigation of private agents yields
substantially different epidemiological dynamics than the standard SIR model. While our
quantitative results focus on the COVID-19 epidemic, the framework and estimation method
have broader applicability for studying policy responses to future epidemics.

The estimated model closely matches the joint evolution of economic and epidemiological
variables throughout the pandemic, both in the aggregate time series and lower-level units of
analysis, such as U. S. states. In particular, the model can capture both the beginning of the
pandemic and the spatial heterogeneity in the virus’s “summer resurgence.” Looking beyond
the data used directly for estimation, we find that our estimated model is consistent even
with data on the seroprevalence of COVID-19 antibodies in numerous U.S. locations. At the
estimated parameter values, individuals face a high infection cost, implying that the model’s
dynamics depart significantly from the standard SIR model. We find that a combination of
endogenous mitigation by agents and the rollout of NPIs explains the decline in economic
activity and output at the onset of the epidemic. These results are consistent with identified
effects of “stay-at-home” orders on activity from empirical studies examining the rollout
and reversal of NPIs at the county level (Goolsbee and Syverson, 2020).2. Furthermore, as
in Goolsbee and Syverson (2020), we find that disentangling the endogenous mitigation of
individuals from the effect of policy requires a county-level analysis (as opposed to state or
national) as many counties enacted NPIs earlier than their corresponding states.

Confident in our model’s success in capturing the salient economic and epidemiologi-
cal features of the epidemic, we proceed to use the framework as a laboratory to conduct
counterfactual experiments. We characterize the implications of several policy scenarios for
economic output and the virus’s human toll. The first experiment examines the laissez-faire
outcome of the model. In particular, we simulate the model forward from August 1, 2020,
assuming that all NPIs are reverted and no further NPIs are put into place. The model
predicts that removing all restrictions on schools and restaurants would lead to an initial
burst of economic activity and output, which yields a jump in the effective replication rate
and generates surge in reported cases and a corresponding surge in daily deaths. Seeing the
surge in infections, individuals then endogenously reduce economic activity, bringing the
effective replication rate back below one by the early fall. Over the course of the first year of
laissez-faire, the model predicts approximately 620,000 deaths from COVID-19, while output
would remain more than 10% below the pre-pandemic level.

Considering laissez-faire over the longer run, and still assuming the development of neither
2See also earlier innovative empirical work on NPIs by Adda (2016) and recent cross-country evidence by

Mendiola et al. (2020)
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a vaccine nor a cure, the model reaches the “slow burn” regime sometime in 2021, where the
behavior of the model is roughly linear on a day to day basis. In this phase, individuals reduce
their economic activity until the effective reproductive factor (R0) is approximately 1. The
pandemic then plays out over the next three to four years, with a roughly constant decline
in daily deaths and cases and an increase in economic activity as the model approaches herd
immunity. During this phase, COVID-19 causes roughly 300,000 U.S. deaths per year, and
economic output recovers roughly linearly from about 90 percent of pre-pandemic levels.
These protracted dynamics imply a final toll of roughly 1.25 million COVID-19 deaths over
the next 4 years.

The PPF, while instructive about the tradeoffs a policymaker faces, is agnostic about how
to value the tradeoff between output and lives. We proceed to compute the optimal adaptive
lockdown policies (a Ramsey-like approach) of a utilitarian planner. The planner can only set
the lockdown’s strength as a function of the current number of infected individuals. Under
the assumption that a cure or vaccine never arrives, we find that the optimal adaptive policy
closely approximates the laissez-faire outcome. The intuition behind this result is that neither
lockdown policies nor endogenous social distancing by agents can change the herd immunity
threshold in the model (recall that when infections are close to zero the model dynamics
converge to those of the basic SIR model). The only role for policy in this scenario is to
minimize the “overshoot” of the herd immunity threshold to prevent “unnecessary” deaths
and infections. The endogenous mitigation under laissez-faire generates very little overshoot
at our estimated costs of infection, hence prescribing a small role for policy.3

Given the stark predictions of the baseline model, we consider how the optimal adaptive
policies change under two plausible extension. First, we rectify one of the unpleasant (and
unrealistic) features of the standard SIR model—namely, we allow for the eradication of the
virus.4 One need not take eradication literally, but we consider this thought experiment also
to approximate an aggressive test, trace, and quarantine (TTQ) that can effectively control
any community-based transmission of the virus. Second, we consider the possibility of the
arrival of a vaccine.5

3Thus far, we have assumed that our planner places the same value on life as do the economic agents.
If the planner places a different value on life, e.g. from the notion of a statistical value of life, the optimal
policy may be different.

4In the standard SIR model with Poisson transition rates between states, the share of infected agents never
reaches zero in finite time (absent a cure). As such, there will still be some measure of infected agents alive
even after curtailing economic and social activity for an extended period (e.g., 100 years). After reversing
the lock-down, the system will immediately revert to exponential growth. We allow for the share of infected
individuals to fall to zero in finite time if the stock of infected individuals falls below a pre-specified threshold
(e.g., if the percentage of infected implies fewer than one infected person in a county).

5We have also considered the arrival of a cure. The properties of the optimal adaptive policy under this
alternative scenario are qualitatively the same as to the arrivals of a vaccine.
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With the possibility of eradicating the virus, a meaningful role for policy emerges. The
endogenous social distancing by agents in the model is not strong enough to affect a quick
reduction in infections to the eradication thresholds we consider.6 Now we find that a strict
lockdown for two months followed by a graduate reopening over the course of a month can
effectively bring infections down to the “eradication zone” whereby community transmission
is eliminated or managed via TTQ. Note, given the spatial nature of the model, it is important
that the lockdown be coordinated across locations, to prevent re-seeding via mobility. In this
extension of the model, over the medium and long run, there is virtually no tradeoff between
health and the economy. At one year (and longer horizons) one can maximize output (via
temporary strict lockdowns followed by reopening) with minimal loss of life.

Finally, we consider the optimal adaptive policy when the arrival of a vaccine is near.
We assume that a vaccine will arrive with certainty on August 1, 2021 and solve for the
optimal adaptive policy until then. Under such a scenario, and given the current stock of
infections, it is optimal to reduce activity to similar levels as under stay-at-home orders for
two to four months. This significantly reduces the current stock of infections, after which
the planner allows activity to increase until the effective replication rate is approximately 1.
The planner achieves this by loosening NPIs to approximately the activity level estimated
when restaurants are take-out only and schools are closed. NPIs are then rolled back once
the vaccine arrives.

Our paper relates to the mushrooming literature studying the epidemiological and eco-
nomic response to the COVID-19 pandemic (e.g. Alvarez et al. (2020); Baker et al. (2020);
Berger et al. (2020); Brotherhood et al. (2020); Eichenbaum et al. (2020); Farboodi et al.
(2020); Glover et al. (2020); Guerrieri et al. (2020); Hagedorn and Mitman (2020); Hur
(2020); Jones et al. (2020); Kaplan et al. (2020); Keppo et al. (2019); Krueger et al. (2020);
Lubik and Matthes (2020); Mitman et al. (2020); Toxvaerd (2020)).7 Given the real-time
and rapidly changing nature of those papers we think that instead of providing a discussion
of each it is more instructive and expedient to summarize where we have innovated relative
to that body of work and what our main contribution is.

Another strand of papers has focused on forecasting purely the epidemiological dimension
of the pandemic’s evolution in a panel of locations. See Liu et al. (2020) and Fernández-
Villaverde and Jones (2020).

In addition to the now standard SIR model and its many variants, there is a large
6Our eradication zone thresholds are motivated by the experiences of Taiwan and S. Korea at effectively

either eliminating community transmission in the case of the former, or managing it with TTQ in the latter.
7We apologize for any papers we have missed. Due to the rapidly changing landscape, this likely is not

an exhaustive literature list.
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epidemiological literature on the notion of “behavioral change” by agents in response to
their environment and new information. Most of these studies do not explicitly incorporate
economic factors or optimizing behavior into their analysis, though there are exceptions such
as Morin et al. (2013) and Fenichel et al. (2011). See Verelst et al. (2016) for an extensive
review of this literature.

Relative to standard epidemiological models, we have added economic behavior — what
is sometimes called a behavioral SIR model.8 We have estimated the model at a granular
level, using data on individual movements based on GPS and data on economic outcomes—
namely, employment—to discipline the economic-epidemiological connection.

The rest of the paper is organized as follows. Section 2 presents the most parsimonious
version of our Econ-SIR model. Section 3 focuses on the two distinct phases of virus spread
to which the Econ-SIR model gives rise. Section 4 extends our Econ-SIR model to facilitate a
more rigorous quantification of the COVID-19 pandemic. Section 5 describes our estimation
strategy and documents the estimated model’s fit. Section 6 uses the estimated model to
conduct and compare a variety of policy experiments. Section 7 concludes.

2 A Minimal Economic-SIR Model
We begin by describing the simplest version of our economic SIR model to focus on the
principal mechanism by which economic behavior and virus transmission interact. In Sec-
tion 4, we enrich the model with additional features particularly relevant to the COVID-19
pandemic.

On the economic side of the model, susceptible agents can choose whether or not to par-
ticipate in the economic marketplace, facing the potential risk of being exposed to infected
individuals. They optimally trade off the gains from market participation, with the cost of
potentially becoming infected with the virus. The more widespread the infection is in the
population, the higher the risk that market participants will become infected. Further, as
more infected agents participate in the marketplace, more individuals become infected. The
model thus features bi-directional interaction between economic activity and viral transmis-
sion.

We set our models in continuous time t ∈ [0,∞], and adopt the following notational
conventions: constants and parameters are denoted with lowercase Greek letters, e.g., β;
stock variables, such as the measure of agents in a given epidemiological state, are denoted

8We have opted for the term “economic SIR” model, as our agents are fully rational, optimizing agents.
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with capital English letters, e.g., S(t); flow-variable counterparts to each stock variable use
the same capital letter but add a “·” over the character, e.g., Ṡ; other endogenous variables
are denoted with lowercase English letters, e.g., n(t).

2.1 Epidemiological Structure

Epidemiological States. The model is populated with a time-invariant, unit measure of
individuals. An individual can be in one of three epidemiological states: Susceptible (S),
Infected (I), or Recovered (R). Susceptible agents can contract the virus, but have not
yet done so. Infected agents have the virus and can spread it. Recovered individuals have
previously had the virus, can no longer spread it, and possess immunity from reinfection. At
a given time t, S(t), I(t), and R(t) denote the measures of individuals in each epidemiological
state.

Epidemiological state transitions. Given initial values S0, I0, and R0, the measures of
agents in each state evolve according to the following system of equations,

Ṡ = −n(t)S(t) (1)
İ = n(t)S(t)− δI(t) (2)
Ṙ = δI(t), (3)

in which Susceptibles contract the virus at rate n(t) and Infecteds recover from the virus
at rate δ. The number of new infections is given by N(t) = n(t)S(t). If we declared n(t)

equal to βI(t) and stopped here, then we would have the most standard SIR model. We next
describe the economic environment that endogenizes the rate of infection, n(t).

2.2 Economics and the Virus

We now introduce the novel economic dimension of the model. Agents face economic needs,
which we model as a random variable with realizations denoted z ∈ (0,∞). Satisfying the
economic need and receiving benefit equal to z requires making an excursion, while forgoing
the excursion yields a benefit of only 0. For a Susceptible, an excursion exposes the agent to
infection risk. For an Infected, an excursion exposes Susceptibles to increased infection risk.
All else equal, we assume that agents prefer not to contract the virus and hence incur a cost
ψ from infection.9 To capture the fact that not all economic needs are equally important, we

9As we discuss in 4, this cost captures all disutility associated with infection.
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model z as drawn from a distribution F (z).
Pausing at this level of generality, one can already see that the virus’s economic impli-

cations will differ according to an agent’s infection status. I and R agents face no infection
risk, so they may undertake excursions without fear of infection to satisfy any z (though we
will assume that infected agents partially self-quarantine). Susceptibles, however, face real
infection risk and thus a tradeoff between the benefits of acquiring z with the potential cost
of infection. This tradeoff makes Susceptibles the model’s key economic decision-makers.

To z, or Not To z? Conditional on taking an excursion, we model the rate of infection
for Susceptibles as proportional to the economically active infected population share:

Ĩ(t) ≡ βI(t)aI (4)

where β is a time-invariant rate of virus transmission per unit of Infected and aI is the
rate at which infected agents take excursions. We refer to Ĩ(t) as the “infection risk” (to an
excursing Susceptible).

In light of their disutility from infection, Susceptibles optimally choose to satisfy a given
economic need only if the benefit exceeds the expected cost of taking an excursion,

z(t) > Ĩ(t)ψ︸ ︷︷ ︸
expected cost
of excursion

≡ z̄(t). (5)

z̄(t) represents the reservation value of z(t) for Susceptibles to excurse, which varies endoge-
nously over time through its dependence on I(t).

Economic Activity’s Endogenous Response to Infection Risk. Let aS(t) denote the
rate of economic activity by a Susceptible–the rate at which the agent undertakes excursion.
The optimizing decision rule in (5) implies that aS(t) is given by the rate at which Suscep-
tibles face economic needs z(t) greater than z̄(t). Denoting the complementary cumulative
distribution function of z as F c(z) = 1− F (z), the activity rate of Susceptibles is given by

aS(t) = 1− F
(
z̄(t)

)
= F c

(
z̄(t)

)
= F c

(
Ĩ(t)ψ

)
. (6)

With z̄(t) as given in (5), equation (6) reveals the the key channel by which the infectiousness
of the environment effects the economic activity of Susceptibles: as the virus becomes more
widespread (I(t) increases), infection risk rises (Ĩ(t) = βI(t)aI increases), which causes
Susceptibles to endogenously curtail their economic activity (as long as ψ > 0, z̄(t) increases

8



with Ĩ(t) and F c(z̄(t)) falls). Noting that in the early stages of an epidemic the vast majority
of agents belong to S(t), this is the primary channel by which the virus affects aggregate
activity. Thus, the model contains a channel by which the virus can suppress economic
activity even in the absence of outside interventions.

Virus Transmission Rate’s Endogenous Response to Economic Activity. The rate
of infection for Susceptibles, n(t), is given by the product of their infection risk per excursion
with the rate at which they take excursions. Using (4) and (6), the infection rate is thus

n(t) = Ĩ(t)aS(t) = Ĩ(t)F c
(
Ĩ(t)ψ

)
(7)

The term F c(Ĩ(t)ψ), derived from the optimizing economic behavior of Susceptibles, intro-
duces a nonlinear relationship between I(t) and the new infection rate. Using (7), the flow
rates Ṡ and İ in Econ-SIR (see equations (1) and (2)) become

Ṡ = −Ĩ(t)F c
(
Ĩ(t)ψ

)
S(t) , İ = Ĩ(t)F c

(
Ĩ(t)ψ

)
S(t)− δI(t) (8)

The term N(t) = n(t)S(t) = Ĩ(t)F c
(
Ĩ(t)ψ

)
S(t) is the number of new infections. Equations

(7) and (8) characterize the key channel by which the economic activity of Susceptibles affects
the infectiousness of the environment: as Susceptibles reduce their economic activity (aS(t)
falls), new infections decrease (n(t) falls), which causes the number of infectious agents to
fall (İ falls so I(t)).

Discussion. From equations (6) and (8), one can see that not only does virus prevalence
have implications for economic activity, but economic activity has implications for virus
prevalence. Lower economic activity by Susceptibles reduces the infection rate, which in
turn reduces the number of new infections and the size of the Infected pool. When I(t)

increases, the endogenous reduction of activity by Susceptibles will tend to mitigate the rate
of new infections.

2.3 Policy: Nonpharmaceutical Interventions in Econ-SIR

The primary policy lever exercised in response to COVID-19 has been the imposition of
NPIs, such as lockdown orders. Particularly in the U.S., such orders have typically restricted
the economic transactions that may take place (e.g. grocery shopping may be allowed out
of necessity while tattoo parlors are required to close). We model such NPIs as a minimum
z̄P (t) that all agents internalize when deciding whether or not to undertake an excursion.
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n(t)︷ ︸︸ ︷
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S(t) I(t) R(t)
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Figure 2: Structure of SIR and Economic SIR Models

Hence the effective reservation value of z for agents of type τ (∈ {S, I, R}) becomes

z̄∗τ (t) = max
{
z̄τ (t) , z̄

P (t)
}
. (9)

And hence activity by agents of type τ becomes

aτ (t) = F c
(
z̄∗τ (t)

)
. (10)

A few important aspects of how such a policy works are worth pointing out. First, for S
agents, the endogenous z̄S(t) forms an effective lower bound for z̄∗: if a policymaker chooses
a z̄P (t) below agents’ endogenous z̄(t), then the policy is inoperative and has no effect on
agents of type τ . Policy options are thus notably asymmetric. Stated in real-world terms,
policymakers can force people to stay home, but they cannot force people to go out.

Second, shutdowns are a blunt tool. Sufficiently restrictive shutdowns will reduce the
activity of all agents. While such measures can mitigate or suppress the virus in the model,
they are clearly a brute force way of doing so in light of the fact that, in principle, new
infections could be driven to zero by driving just aI to zero.

2.4 Economic Activity and Output

We will later treat economic activity and output as observables when estimating the model.
However, in the data we cannot separately observe the activity of agents by epidemiological
state, so the observables will correspond to the model’s aggregate values. To fix ideas, it is
helpful to first define these aggregate concepts within the basic Econ-SIR model.

Aggregate activity, denoted a(t), is the measure-weighted mean of activity rates by each

10



group

a(t) = aS(t)S(t) + aI(t)I(t) + aR(t)R(t) (11)

In the absence of NPIs, aR(t) = 1 and aI(t) = aI = F c(z̄I) and one can write a(t) as10

a(t) = 1−F
(
z̄S(t)

)︸ ︷︷ ︸
rate of forgone
excursions by S

S(t)− F (z̄I)︸ ︷︷ ︸
rate of forgone
excursions by I

I(t) (12)

When I(t) equals zero, the virus is behaviorally irrelevant and activity occurs at its full rate
of 1.

Output is the rate at which value is accumulated from activity. The model differentiates
between activity and output because whenever agents restrain their economic activity, they
optimally sacrifice their least valuable activities first (forgo the lowest values of z, recall (5)).
The optimizing behavior leads to a potentially non-linear relationship between activity and
output, with the exact relationship determined by the form of F .

Letting f(z) = F ′(z) and h(z̄) be the partial expectation of z, defined as

h(z̄) =

∫ ∞

z̄

zf(z)dz = E[z | z > z̄]F c(z̄) (13)

the output rate is given by

y(t) = h
(
z̄S(t)

)
S(t) + h

(
z̄I(t)

)
I(t) + h

(
z̄R(t)

)
R(t) (14)

Equation (14) makes clear the differing output rates that result from the differing behavior
between agents who are concerned with infection and agents who are not. In our estimated
model, we use F (z) such that log(z) is normally distributed with mean −σ2

2
and variance

σ2, in which case E[z] = 1. Given this assumption, the variance parameter σ2 summarizes
the relationship between output and activity, as shown in Figure 3.

3 The Spread of the Virus in Econ-SIR: Exponential
Growth and “The Slow Burn”

In this section we describe the dynamics of the Econ-SIR model, in particular the nature of
the two phases of virus spread to which the model endogenously gives rise: an initial phase

10The following expression comes from substituting for aS(t) and using the fact that S(t)+I(t)+R(t) = 1.
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Figure 3: Relationship between economic output and activity given various values of σ, the
standard deviation of log(z).

of exponential growth following by a phase of approximately linear growth. When ψ = 0

Econ-SIR collapses to the standard SIR model whose dynamics are well-known from the
epidemiological literature. As we describe below, increasing the cost of infection ψ will lead
to a more muted region of exponential growth and a more protracted phase of approximately
linear growth.

3.1 Phase 1: Exponential Growth of Infections

The baseline rate at which an Infected agent in the model reproduces the infection in the
broader population, which we call the baseline reproductive rate R0, is given by

R0 =
β

δ
. (15)

Namely, R0 is the ratio of the rate at which Infecteds transmit the virus per unit of Suscep-
tibles to the rate at which the Infecteds recover and stop transmitting the virus altogether.
The baseline reproductive rate will obtain when S(t) is near 1.

Taking into account the transmission mitigation from reduced activity by Susceptibles,
the effective reproductive rate in Econ-SIR is

Re = aS(t)R0 . (16)
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Using (2) and (7), the growth rate of infections in the model is given by

İ(t)

I(t)
=
βI(t)aS(t)S(t)− δI(t)

I(t)
= βaS(t)S(t)− δ (17)

For very small values of I(t) or ψ, the activity rate of Susceptibles will be aS(t) ≈ 1.
Thus if initial infections I0 are very small, to first-order dynamics of SIR and Econ-SIR
are equivalent. Further, if S(t) ≈ 1, Equation (17) then implies exponential growth of the
infected population share according to rate

İ(t)

I(t)
= β − δ. (18)

which is positive whenever R0 > 1.

3.2 Phase 2: The Slow Burn

As the virus spreads and I(t) continues to increase, aS(t) endogenously declines and plays a
more important role in mitigating the the pace of new infections. Here we develop intuition
for the second phase of virus spread in which I(t) is approximately constant, i.e. İ(t) ≈ 0 .

Recall that İ(t) is given by

İ(t) = βI(t)aS(t)S(t)− δI(t), (19)

it follows that İ(t) = 0 when

βaS(t)S(t) = δ. (20)

Considering the case where the infected share has been low enough that R(t) is still negligible
so that S(t) = 1− I(t)−R(t) ≈ 1− I(t), substituting for aS(t), and dividing through by β,
one can write the condition in (20) as

[1− F (βI(t)ψ)] (1− I(t)) =
δ

β
=

1

R0

. (21)

Recalling that z̄(t) = βI(t)ψ, one can express the previous relationship in terms of z̄(t) as

[1− F (z̄)]

(
1− z̄(t)

βψ

)
=

1

R0

(22)
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For large βψ, equation (22) has the approximate solution for the endogenous object z̄(t) of

z̄(t) ≈ F−1

(
1− 1

R0

)
. (23)

Again using z̄(t) = βI(t)ψ, equation (22) implies that the pseudo-steady-state entails a
constant fraction of agents in the infected state given by

I(t) =
1

βψ
· F−1

(
1−R−1

0

)
(24)

Since new infections N(t) must equal outflows, δI(t), the constant levels of new infections
are given by

N(t) =
δ

βψ
· F−1

(
1−R−1

0

)
=

1

ψR0

· F−1
(
1−R−1

0

)
. (25)

The expression for z̄(t) in (23) immediately implies that the activity rate of Susceptibles
satisfies aS(t) = 1− F

(
F−1(1−R−1

0 )
)
= R−1

0 and hence

Re = aS(t)R0 = 1 (26)

Thus, for sufficiently large βψ, and while R(t) remains relatively small, we observe an
effective reproduction rate of approximately 1. Absent some other intervention, this “slow
burn” regime will last until R(t) becomes appreciably large, meaning “herd immunity” dy-
namics begin to have an impact.

3.3 Comparing SIR and Econ-SIR Epidemiological Dynamics

Here we highlight the key differences in the behavior of the SIR and Econ-SIR models. To
understand the dynamics of both models it is instructive to understand the the curve in
(S, I) space where İ(t) = 0, known as the nullcline of I(t). Recall that İ(t) is given by

İ(t) = βI(t)aS(t)S(t)− δI(t), (27)

it follows that the nullcline is characterized by

βaS(t)S(t) = δ. (28)
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In the SIR model, since aS(t) = 1 ∀t, the nullcline of I(t) is independent of I(t) and in given
by a vertical line at S = 1/R0, which is the herd immunity threshold (HIT).

Proposition 1 When ψ > 0 and F (0) = 0, the nullcline of I(t) is characterized by an up-
ward sloping curve in (S, I) space, denoted IN(S), that originates at (1/R0, 0). Furthermore,
the slope of the nullcline is decreasing in ψ.

Proof. Substituting (6) into (20) and rearranging, the nullcline is characterized by

IN =
1

βψ
F−1

(
1− 1

R0S

)
Taking the limit as S → 1/R0 ⇒ IN → 0. Differentiating IN with respect to S yields:

∂IN

∂S
=

1

βψ

R0S
2

f
(
F−1

(
1− 1

R0S

)) > 0

where the positivity follows since all parameters are positive and the pdf f is non-negative.
The relationship is also decreasing in ψ.

Assuming initially that no agents have immunity to the virus R0 = 0, if the initial seeding
of the I0 is such that I0 < IN(1 − I0), then the nullcline will describe the point that is the
“peak” of the epidemic in terms of the stock of the number of infected agents and the effective
replication rate is equal to unity, Re = 1. The differences between SIR and Econ-SIR are
characterized graphically using the phase diagrams shown in Figure 4.

In this example, the parameters are chosen so that δ = β/2.5, which yields R0 = 2.5.
In the SIR model, I(t) then increases until S(t) falls below 0.4, which is the value at which
İ turns negative.11 Reduction of I(t) mass in Econ-SIR occurs well before reaching herd
immunity, as agents try to avoid infection (as is visible from the bending of the nullcline
from a verticle line). The strength of the mitigation increases with the cost of infection ψ.
This results in both slower model dynamics — in SIR herd immunity is reached in 4-5 weeks,
whereas in the rightmost example it takes 8-9 weeks. Further, the stronger mitigation results
in smaller overshoot of the herd immunity threshold. Summing up, Econ-SIR generates more
protracted dynamics and less overshoot relative to the SIR model. The extent of overshoot
will become important later as this is the main externality that a policy maker is able to
correct with lockdown policy.

11Reduction of I(t) mass in SIR does not occur until hitting “herd immunity.”
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Figure 4: Phase diagrams for Econ-SIR models under alternative infection costs ψ. Blue lines
represent sample time paths, dots along the time paths are spaced at one week intervals, black
vertical dashed lines represent the herd immunity threshold, red dashed lines are nullclines
of I(t).

4 The Spatial Econ-SAIRD Model
This section extends our Econ-SIR model along multiple empirically-relevant dimensions
towards rigorously quantifying the policy tradeoffs posed by the COVID-19 pandemic. We
leave some of the mathematical specifics to Appendix B.

First, we add two features to the epidemiological environment that are particularly rel-
evant for modeling COVID-19: asymptomatic virus carriers and mortality risk. It has been
well documented that many COVID-19 carriers show few or no symptoms, sometimes only
for a few days prior to becoming more seriously ill and sometimes agents recover with no
increase in severity. As we now know, COVID-19 poses mortality risk uncommonly high for
a virus so easily transmitted. Accordingly, when agents initially contract the virus in the
extended model we assume that they move to an asymptomatic state (A). Asymptomatic
agents in the model unknowingly transmit the virus. We model asymptomatic agents as
typically unaware of their infectiousness, and hence they behave similarly to Susceptibles.12

We should note that we keep ψ to denote the cost of being infected (as opposed to the
mortality cost) to capture the fact that even non-fatal cases can entail significant medical
costs to individuals (Kniesner and Sullivan, 2020). Asymptomatic agents recover directly
from the A state at rate γ or become symptomatic and infectious, moving to I at rate λ.
Infectious agents die (move to the D state) at rate κ. The other epidemiological states have

12We model this as an activity rate aA(t) that is a trailing moving average of the activity rate of Suscep-
tibles.
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the same interpretation as before. Individuals in the I state, being generally symptomatic,
we model as having some awareness of their status and choosing to partially self-quarantine
by undertaking actions no less valuable than some level z̄I . Activity among I agents is then
given by aI = F c(z̄I). We refer to the epidemiological state space of the model as SAIRD.

A second important feature of the real world is the presence of many separate locations,
each with a distinct outbreak severity and virus transmission environment. Furthermore,
real world agents travel across locations, potentially spreading the virus from one region to
another. We add a spatial dimension to the model consisting of J distinct locations, each
with its own measures of agents in the five epidemiological states (denoted with subscripts,
as in Sj(t)) and its own values of of βj and ψj. All other parameters are the same in all
locations. Denote the rate of economic activity by infectious agents in location j as

ej(t) = aI,j(t)Ij(t) + aA,j(t)Aj(t). (29)

If location j were an island, then the infection risk to an excursing Susceptible would be
Ĩj(t) = βjej(t). However, allowing for movement across locations, we model the infection risk
per Sj(t) excursion as a weighted average of the local force of infection and the population-
weighted national average force of infection,

Ĩj(t) = (1− α)βjej(t) + α
∑
k

wkβkek(t), (30)

where α ∈ [0, 1] and wk is a weight proportional to location j’s relative population. We also
allow for an information friction in which agents perceive their infection risk to be determined
according to the form of (30), but with a value α∗ that may differ from the true α. Denote
an Sj agent’s perceived infection risk as Ĩ∗j (t).

The economic decision agents face, “to z, or not to z,” is similar to before. Susceptibles
can take an excursion with (perceived) expected benefit of z(t) − Ĩ∗j (t)ψj, or not. However,
we enrich the environment to allow for a “no-contact consumption” option, by which agents
can forgo an excursion and still obtain some of the value from a given z, namely d · z(t),
where d ∈ [0, 1]. This model mechanism corresponds to the availability of delivery or takeout
services for a variety of goods. With the delivery option, Susceptibles optimally take an
excursion only if zj(t) > Ĩj(t)ψj/(1− d) = z̄j(t).

We allow for the economic environment to evolve over time with trends in both the value
of the delivery option (d(t)) and the safety of activity (β(t)). For β(t), we represent the
evolution via a common factor β̃(t) that proportionally scales the values of βj everywhere.
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We model the trends as deterministic processes

d(t) = d̄ · Λ(λdt) and β̃(t) = 1 +
(
β̄ − 1

)
Λ(λβt) (31)

where d̄ and β̄ represent the terminal values of the processes, λd, λβ ≥ 0 govern the speed
of the transitions to the terminal values, and Λ is the “smoothstep” sigmoid function, which
is increasing and for which Λ(0) = 0.13 Accounting for the common trend component, the
value of the infection rate parameter in j at time t is given by βj(t) = βj · β̃j(t).

NPI policy operates in fundamentally the same way in the extended model as in the Econ-
SIR model (see Section 2.3). The activity of all agents in the model is potentially constrained
by NPIs. This includes recovered R agents since NPIs have not been enforced differentially
based on a person’s immunity status. When taking the model to data and estimating the
severity of realized NPIs, we will allow for three different NPI severities (z̄P1 , z̄P2 , and z̄P3),
corresponding to school closures, restaurant take-out only orders, and stay-at-home orders
(the most broadly used NPIs).

We model the distribution of economic needs as Lognormal(µz, σz).14 In addition to
having support (0,∞), the Lognormal distribution allows for known expressions for partial
and conditional expectations, which facilitates the calculation of quantities such as (14).
When taking the model to the data there will be two additional considerations for the
handling of z. Because we will normalize output in the data, we parameterize the distribution
to have µz fixed and equal to −σ2

z/2, which ensures E[z] = 1. Lastly, we will estimate the
model from daily data, which necessitates some special considerations for the systematic
fluctuations of activity and hours with day of the week. To accommodate the systematic
day-of-week variation, we allow day-specific values of µz.

5 Estimating Spatial Econ-SAIRD’s Parameters
This section describes our approach to estimating the Econ-SAIRD model’s parameters and
shows that the estimated model can generate the paths of economic and epidemiological
variables that we observe over the course of the COVID-19 pandemic. Going forward, let θ
denote the set of model parameters.

13The smoothstep function has a simple polynomial expression over the transition domain and is commonly
used in computer graphics due to its ease of computability.

14With z ∼ Lognormal(µz, σz), our parameters µz and σz represent the mean and standard deviation of
the random variable log(z).
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5.1 Data

Our estimation uses a panel of daily county-level observations over the period from February
15, 2020 to July 15, 2020 on NPIs, new COVID-19 cases, new COVID-19 deaths, point-of-
interest visits (economic activity), and hours worked.15 After removing counties with insuf-
ficient data, the estimation uses 921 U.S. counties for inference, accounting for about 80
percent of the U.S. population.16 The economic variables are normalized county-by-county.
For the next section, it will be useful to denote the vector of county i’s observables at time
t as

xi,t =
[
Activityi,t , Hoursi,t , NewCasesi,t , NewDeathsi,t

]′ (32)

and let X ≡ {xi,t}i,t denote the full panel of the observations.
The NPI data consists of three different types of NPIs: stay-at-home orders, restaurants

and bars takeout-only orders, and school closures. While we observe the enactments of NPI
orders, an NPI’s implications for behavior must be inferred. Hence, an NPI in location i at
time t of type k enters our data as a binary variable bi,t,k, with a value of 0 for “off” and
1 for “on.” The model represents the relevance of a type-k NPI through the value of the
parameter z̄Pk , which we include in θ and estimate for each NPI type. For the next section,
it will be useful to denote the full panel of NPIs as B ≡ {bi,t,k}i,t,k and let B0:t be the panel
of all NPIs up through date t.

5.2 Likelihood

Given θ and the panel of enacted NPIs, the SAIRD model generates a deterministic path
of values for epidemiological and economic variables in each location.17 In particular, the
model generates paths for newly infected and deceased agents, as well as economic activity
and output. We take the deterministic structural model, along with measurement errors,
to be the generating process for these four data series. The measurement errors create a
probabilistic relationship between the data and model-generated paths that forms the basis
of the likelihood function. We next describe our model for the data generating processes of
the four variables of interest and then follow with a description of the resulting likelihood
function.

15Appendix A contains additional details on the data.
16We use only counties with populations of at least 50,000. Because of missing or sparse observations in the

Homebase hours data, we exclude a few additional counties that meet our minimum population threshold.
17The initial conditions for the epidemiological states are relevant as well, however we set them as a

deterministic function of the elements of θ that we have already introduced. See Appendix C.1.
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Economic Data Generating Process. We write aθ,B0:t

i,t to denote the model’s simulated
value for economic activity in location i at period t, where the superscripts emphasize the
simulated path’s dependence on the the particular values of the parameters and NPIs. For
both of the economic variables we assume mean-zero additive Gaussian measurement errors
around the model’s value. For economic activity, the data generating process is thus

Activityi,t = aθ,B0:t

i,t + ϵi,t,a , ϵi,t,a ∼ Normal
(
0, σ2

a/wi
)
, (33)

where wi is a weight proportional to county i’s relative population among counties in the
sample. The model for Outputi,t is analogous to (33), with the model object on the right-hand
side instead being yθ,B0:t

i,t . We estimate the series specific variances σ2
a and σ2

y.

Health Data Generating Process. Modeling the relationship between the model objects
and health variables introduces some additional challenges. First, the data on new COVID-
19 cases and deaths are discrete counts and their scale varies considerably with county
populations. Meanwhile, the model’s predictions for new cases and deaths take the form of
continuous population shares. Taking new cases as an example, one can straightforwardly
map the model-implied flows into expected counts for a county with population popi as
popi × Ni(t).18 The expected count can then discipline the mean of a discrete probability
distribution over the positive integers.

Second, the data are subject to systematic measurement error of at least two types. The
first type is reporting delays: the tendency of new infections or deaths occurring at time t
to not show up in the data until t+ d. We examined the empirical distribution of reporting
delays in locations that separately report both day-of-death and “new deaths,” which lead
us to incorporate a delay of d = 10 days for both cases and deaths (see Figure A.1 in the
Appendix).

The second type of systematic measurement error in the health data is underreporting.
We account for underreporting by assuming that asymptomatic cases are generally not re-
ported (i.e. agents in A(t) do not show up in new cases data) and that symptomatic cases
(new entrants to I(t)) are systematically underreported, particularly in the early phase of
the pandemic. We model the evolution of underreporting of new cases using a sequence of
reporting factors rt ∈ [0, 1] that converge to 1 at an exponential rate. In the limit, cases are
correctly reported.19 Accounting for the systematic delays and underreporting, we have the

18Note that the observed value xi,t,j satisfies xi,t,j = nipi,t,j for a true population fraction pi,t,j . The
relevant model flows are given in equations (43) and (45) as Ni(t) = λAi(t) and Ḋi(t) = κIi(t).

19While we build under-reporting of cases into the model and estimation, we do not do so for deaths. We
estimate the model to best match the reported data for COVID-19 deaths (including the reporting delays).
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following implication that will center the DGP for new cases,

E[NewCasesi,t] = rt−d · popi ·N θ,B0:t−d

i,t−d . (34)

Lastly, having accounted for the systematic dimensions of the measurement error, we
model the idiosyncratic variation as arising according to a Conway-Maxwell-Poisson (CMP)
distribution.20 The CMP(λ, ν) distribution extends the Poisson distribution by allowing the
center and dispersion to be specified separately. The parameter ν governs the distribution’s
dispersion, allowing us to model the difference in measurement accuracy between cases and
deaths. Thus, we model the new cases data as

NewCasesi,t ∼ CMP
(
λC , νC

)
(35)

where νC = 0.1 and, conditional on νC , λC is chosen to fix the mean of the CMP distribution
at the value prescribed by (34). We model the data on new deaths analogously, but with
νD = 100. The differing dispersion parameters reflect the view that the deaths data are
considerably more reliable.

Location-specific parameters. All parameters except {βi, ψi}i are common to all loca-
tions. We shrink the location-specific values of βi and ψi towards common values by modeling
them as random effects with βi ∼ LogNormal(β̄, σ2

β) and ψi ∼ LogNormal(ψ̄, σ2
ψ).

Initial conditions. We initiate the virus for county j at the date when a positive number
of confirmed cases first occurs in the data. At that date, we set I(t) = NewCases/Pop and
A(t) = ϝI(t), where ϝ is a function of other parameters (see Appendix C.1).21

Likelihood. Accounting for the DGPs and random effects, the likelihood takes the form

L(θ|X,B) ∝ p(X|θ,B)
∏
i

p
(
βi|β̄, σ2

β

)
p
(
ψi|ψ̄, σ2

ψ

)
. (36)

A number of journalistic outlets have documented evidence of “excess deaths” in multiple locations, which
exceed the number of reported COVID-19 deaths in those locations. To the extent that official death totals
are meaningfully under-reported, the true mortality rate in our model (κ) should be higher and readers of
this would want to accordingly adjust upwards our mortality predictions.

20The CMP distribution of Conway and Maxwell (1962) is also known as the COM-Poisson distribution.
See Sellers et al. (2012) and Daly and Gaunt (2016) for useful recent overviews of the distribution’s features.

21At the initialization date, R(t) = D(t) = 0 and S(t) = 1− I(t)−A(t).
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We assume the measurement errors are idiosyncratic in the sense of being independent across
time, location, and data series, thus p(X|θ,B) decomposes as p(X|θ,B) =

∏
i,t p(xi,t|θ,B0:t)

where

p(xi,t|θ,B0:t) =ϕ
(
Activityi,t|aθ,B0:t

i,t , σ2
a/wi

)
· ϕ

(
Outputi,t|yθ,B0:t

i,t , σ2
y/wi

)
· g(NewCasesi,t|λC , νC) · g(NewDeathsi,t|λD, νD)

(37)

for ϕ(·|µ, ς) the pdf of a Normal distribution with mean µ and variance ς, g(·|λ, ν) the
probability mass function of a CMP distribution, and λC and λD set as described above. We
estimate θ as the argmax of (the log of) L in (36).

Discussion. A few aspects of the estimator warrant further discussion. First, the simulated
trajectories from the model might be interpreted as impulse responses to a “COVID-19
shock.” The entirety of the paths reflect a single COVID-19 infection shock that perturbs
the measures of S(t) and I(t) in each county at the beginning of the pandemic and the policy
paths in each county. In other words, the paths have no mechanism for correcting mid-course
deviations from the data. In the language sometimes used when assessing DSGE models,
one could say that our model fit results exclusively from internal propagation mechanisms
following the infection impulses in early March.

Second, for the parameters common across locations, the estimator prioritizes fitting
the dynamics of higher population areas. The economic variables are normalized county-
by-county, but the weights wi in (33) decrease the relative measurement error as county
population increases. A similar relationship is implicitly induced by the CMP distribution
for the health variables. One can show that increasing the mean of the CMP while holding ν
fixed at a given value results in probability mass more concentrated around the distribution’s
center. Thus the relative size of the idiosyncratic variation falls with higher expected counts,
which, all else equal, occur in higher population areas. The greater “weight” on matching
the dynamics in large population counties helps to ensure good fit to aggregates.

5.3 Fit

We show the estimated Econ-SAIRD model’s success at fitting the data along multiple
dimensions, beginning with the time-series of aggregates and period-by-period cross section.

Time series. The two panels of Figure 5 compare the data and model predictions for
the four variables of interest. In light of this fact, we think the model’s ability to generally
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(b) Cross-section from the model.

Figure 5: Data vs model: time series and cross sectional distributions.

match the paths of all 4 variables over a roughly 5 month period, including case resurgences
in multiple states, based on only initial conditions is fairly remarkable.

Cross sectional units. While Figure 5 demonstrates the model’s fit to the aggregate
time series, it is also important to show that the model accurately captures the time series
evolution at lower levels of aggregation.22 Figure 6 compares the model and data for two
states of particular interest: Florida and California. Appendix F contains analogous figures
for each of the 44 states in our sample.23

Seroprevalence. Since the model assumes underreporting of cases in the data, the model
predicts that true cases always exceed the reported case data. Using seroprevalence studies
we can quantitatively validate the model’s view of the number of unreported COVID-19
cases. This is an especially useful validation of the model mechanisms, as our estimation
does not target these quantities at the few times and locations for which they are available.

The CDC reports the results from 10 local seroprevalence studies, each conducted at
two different points in time.24 Because our model provides daily county-level predictions
for COVID-19 exposure, we can generally construct the model’s assessment of exposure in
the same location, and at the same dates, as each seroprevalence study. The first panel of

22We would not want to get the average right (in the form of aggregates) while getting all individual units
very wrong.

23Our data does not include any counties in six states because of lack of coverage in the hours worked
data.

24See https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/commercial-labs-interactive-serology-dashboard.
html.
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Figure 6: State-level fit. Solid black line indicates stay-at-home order, dashed black line
indicates restaurant take-out-only order, dotted black line indicates school closure.

Figure 7a shows the model’s aggregate implications for true cases vs reported cases. The
second panel shows the model’s implications for exposure in the locations and on the dates
of the available seroprevalence studies.25 We find this a particularly interesting dimension of
the model to evaluate because our estimation procedure does not “target” or in any way use
these features of the data. Further, given the uncertainty over what fraction of past infected
people demonstrate antibodies, the fact that the model slightly over-estimates the data point
estimates is reassuring.

6 Counterfactuals and Policy Experiments
In this section we examine the quantitative implications of the estimated Econ-SAIRD model
for the trajectories of epidemiological and economic variables under different policy scenarios.

Eradication Zone. Under some policies, the model’s implications depend importantly
on whether or not it is possible to eradicate the virus by driving the number of carriers
sufficiently low. An artifact of standard SIR-based models is that it is not possible to eradicate
a virus until the population reaches herd immunity. This is because some measure of agents

25The values are taken from the CDC’s Commercial Laboratory Seroprevalence Survey Data. The CDC
offers the following broad summary of the nature of the underlying data, “The survey includes people who
had blood specimens tested for reasons unrelated to COVID-19, such as for a routine or sick visit during
which blood was collected and tested by commercial laboratories in participating areas from each of the 10
sites.” As such the data collection should not reflect COVID-19 cases that are either patently symptomatic
or have already resolved via mortality.
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Figure 7: Seroprevalence in the model and data.

remain infected forever in this class of models and, as long as a large share of Susceptibles
remains, the virus will propagate in the presence of any positive measure of infectious agents.
We will consider a version of the model where A(t) and I(t) jump discontinuously to 0 if the
total measure of infectious agents (A(t) + I(t)) falls below a particular threshold. At which
point, we say that the virus has been eradicated.

When using this variant of the model, we entertain two sizes for this “Eradication Zone,”
one at smaller (and hence weaker) one at 100 per million and a stronger one at 400 per
million. Under reasonable asymptomatic transmission and case reporting assumptions, these
A+I numbers correspond very roughly to reported new case rates of 1 and 5 per million per
day, respectively. Both of these zones are still fairly stringent, as daily reported case number
in the US have been between 100 and 200 per million for some time. They are closer to
numbers seen in S. Korea which are typically around 1 per million but spike up to 5-10 per
million during small outbreaks.

6.1 Laissez-Faire

We first examine the scenario in which policymakers do nothing, i.e. laissez-faire policy. This
scenario demonstrates the behavior that the model absent NPIs simply from the endogenous
responses of Susceptibles with respect to the force of infection. As in other SIR-based models,
the virus continues to spread until the population reaches herd immunity. As discussed in
Section 2, infections peak earlier than the herd immunity threshold — at the point at which
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Figure 8: Laissez-Faire. Red lines are population-weighted means, thick blue lines are for
the median county, and the light blue shaded bands indicate percentiles of the cross sectional
distribution of counties.

the inflow rate of new infections equals the outflow rate of infectious agents. In the Econ-
SAIRD model achieving herd immunity in the full cross-section requires about 71 percent
of the population having been infected. From a policy perspective, the important questions
about the laissez-faire option are how long it takes to get to herd immunity, what are the
costs of doing so, and, perhaps most importantly, what are the other options?

Figure 8 shows the long term trajectories of economic and epidemiological variables under
laissez-faire policy in the Econ-SAIRD model. The critically different implication of our Econ-
SIR-based model, relative to a standard SIR model, is the protractedness of the path back
to normality. The endogenous virus avoidance of Susceptible agents, who reduce activity
even in the absence of formal lock downs, generates a path of roughly 3 years to reach
herd immunity, after which infections steadily die out over the subsequent 2 years. Along
this path, activity and output remain significantly below their pre-pandemic levels. Our
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Figure 9: Forward simulations under alternative policies.

results crystallize the notion that “reopening” is easier said than done. As long as people
fear infection from the virus, they will continue to curtail their economic activity and output
will remain below normal levels. As the model approaches herd immunity, economic activity
increases and approaches its baseline level, ultimately yielding dynamics similar to those in
models with a more simplistic infection mechanism, albeit occuring at a considerably later
date in Econ-SIR. As this process plays out, cumulative mortality over the five years is about
0.38 percent of the population, which equates to roughly 1.25 million deaths in the United
States.

6.2 Alternative Policies

With the model’s baseline behavior as context, we next consider the outcomes under various
policies. In each case, we assume the policy is in effect from July 12, 2020 forward.

• Status quo. The status quo option entails the continuation of whatever NPI policies
were in place at the end of our estimation period.
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• Stay-at-home indefinitely. (Self explanatory).

• Severe temporary lockdowns, followed by full reopening. It has been suggested
that a severe temporary lockdown would be an effective way to reduce U.S. infection
levels to the point where test-and-trace strategies would be viable for containment.
We consider the implications of such a severe shutdown if it were followed by simply a
naive reopening.

• Optimal adaptive local lockdowns. We next consider optimal policy rules that
enforce location-specific lockdowns of varying strength as a function of the local share
of infectious agents.

Figure 9 shows the predicted trajectory of our benchmark variables under laissez-faire,
status quo, and perpetual stay-at-home. From these trajectories one can see the main trade-
offs that the model allows. While laissez-faire generates the highest output (even despite
some degree of private mitigation by agents), it does so at the cost of vastly more infections
than the other options over the near term. At the other end of the spectrum, our estimated
stay-at-home orders would be sufficient to dramatically curtain the virus’s spread, they do
at the cost of also dramatically curtailing economic output.

The long run implications of a temporary severe lockdown (if followed by a full reopening),
depend critically on whether or not the eradication zone is “fair game.” Figure E.4 in the
appendix shows the model outcome given a fairly stringent lockdown lasting for two months.
In the short run, the lockdown is effective at reducing infection rates at the cost of reducing
output by about 50 percent. If the eradication zone exists, then this is an extremely effective
long run strategy for knocking out the virus and fully normal activity resumes within 4
months. However, with no eradication zone, infections come surging back after only a few
months. On the economic side, there is a brief period of high output at the early phase of
the virus resurgence, followed by a subsequent collapse due to renewed avoidance.

We next consider optimal policy rules that enforce location-specific lockdowns of varying
strength as a function of the local share of infectious agents. We optimize a policy rule of
the form

z̄j,t = z̄max · Λ
(
Aj,t−1 + Ij,t−1

)
(38)

where Λ(s) is the smoothstep sigmoid function with left edge of 0 and right edge of s̄. The
parameters to optimize in (38) are the maximal lockdown intensity, z̄max, and the value
of s̄ of local virus prevalence that triggers the maximal lockdown. For each simulation, we
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compute welfare via

W (t0, T ) =
T∑
t=t0

J∑
j=1

(
yj,t − ψjNj,t

)
. (39)

and determine (z̄max, s̄) jointly as

(z̄max, s̄) = argmax
z̄max,s̄

W (t0, T ) (40)

where t0 is the end of the estimation sample, and T is 365 days after t0. For each location, the
model-implied trajectories of output yi,t0:T̄ and new infections Ni,t0:T̄ depend on the sequences
z̄i,t0:T̄ generated by the policy rule. We will invoke the welfare calculation in (39) in additional
experiments going forward. W is our preferred measure for comparing alternative policies,
as it is the most internally-model-consistent summary of how agents value trajectories of the
model’s variables. Nevertheless, to see the model-implied tradeoffs in possibly more concrete
dimensions, we also summarize the ramifications of alternative policies in terms of output
and deaths. One can then form judgments about a given policy’s appropriateness without
fully accepting the primacy of W .

In the presence of a weak eradication zone (Figure 10), we estimate that the optimal policy
takes the form of a lockdown level z̄max = 1.05 and s̄ = 212 infectious agents per million.
Meanwhile, with a strong eradication zone, we find the optimal policy to be z̄max = 1.08

and s̄ = 883. To make the implications more concrete, such a policy (when active in a
given location) would restrict economic activity to a level somewhat lower than that of our
estimated stay-at-home order. The threshold for introduction is based on total active cases
per million. Mapping this into daily reported cases per million, we can divide by about 4 to
account for asymptomatic cases and under-reporting and divide by 20 (≈ 1/δ) to go from a
stock to a daily flow (so a total of 80). In this case, the thresholds map to 2.7 (for 212) and
11 (for 883).

Within the model, the nature of the tradeoff between deaths and output depends impor-
tantly on both the time horizon and the eradication zone. We follow others in the literature
and refer to the set of achievable outcomes for deaths and output as the pandemic possibil-
ities frontier, or PPF. Figure 11 plots the PPFs pertinent to 1 month and 1 year horizons
under optimal adaptive lockdown with and without the eradication zone assumption. With-
out the eradication zone, (top row) we find classical tradeoffs between output and deaths.
Note that the lower right most point in each PPF pertains to laissez-faire policy. If eradi-
cation is possible (bottom row), then the estimated model implies a PPF with an upward
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Figure 10: Optimal adaptive lockdown policy, with eradication zone.

sloping region at a one year horizon. This is achievable because once the virus is eradicated,
output returns to normal levels, which can in principle outweigh sharp initial drops in out-
put associated with a temporary stringent lockdown to eradicate the virus. It turns out, that
such an approach yields gains in both dimensions, generating the upward sloping portion of
the PPF.

6.3 Optimal Policy when a Vaccine is Near

The previous section’s results underscore the fact that there is little scope for NPIs to decrease
the virus’s final toll if eradication is impossible and a vaccine never arrives. In this section we
consider optimal policy when a vaccine is likely in the relatively near term — one year from
now. The question then becomes, would any NPIs be worthwhile over such a time horizon?

One can develop the basic intuition for why NPIs could yield welfare gains under such a
scenario by re-examining the laissez-faire path in Figure 8. Along the laissez-faire path, cases
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Figure 11: Forward looking PPF under adaptive lockdown policy. Top row of panels assumes
no eradication zone exists. Bottom row of panels assumes a strong eradication zone.

and deaths are frontloaded. With a vaccine ready at time Tvax, we know that the virus’s total
cost beyond Tvax will be small regardless of how many infections have occurred by that date.
In that case, it could conceivably be optimal to prevent the burst of infections and deaths
that occur in the pandemic’s early stages since the vaccine renders it unnecessary ever to
incur them at all. One can contrast this with the scenario in which no vaccine could ever be
developed, in which case simply shifting the timing of the costs (i.e. whether negatives are
frontloaded or backloaded) would be largely irrelevant (for a sufficiently patient planner).

In particular we compute an optimal policy of the form of (40), tailored to the case of a
vaccine 1 year away, and beginning from the observed state of the world in mid-July 2020.
Figure 12 shows the trajectories of the four benchmark variables under the optimal adaptive
NPI policy when a vaccine is one year away.26 The resulting trajectories of cases and activity

26We also considered the cases of 6 months and 2 years, which turned out to give results very similar to
the 1 year case presented here. However, if it takes more than 4 years for a vaccine to arrive the optimal
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Figure 12: Optimal adaptive lockdown with vaccine 1 year away.

are particularly informative for understanding the form of the policy.27 In light of the initial
stock of infectious agents, the policy begins by imposing a considerable reduction in activity
to levels similar to our estimated effects of stay-at-home orders (activity slightly above 40
percent, output just below 70 percent). This phase remains in effect in most locations for 2 to
4 months, depending on the initial stock of infectious agents, during which time the activity
reduction is great enough to dramatically reduce new infections and the stock of infectious
agents. After this period, the optimal NPI loosens modestly, but is not removed entirely.
The policy then prescribes a roughly 8 month period of reduced activity at levels similar to
our estimated restaurants-takeout-only orders (activity around 60 percent, output around
80 percent). Having already reduced the stock of infectious agents, the somewhat higher
activity level remains sufficient to keep the effective reproduction number around 1, and

policy again resembles the laissez-faire equilibrium.
27When the vaccine arrives, we model it as being administered to 2 million people per day, or 0.6 percent

of the population. In the model, vaccinated agents are a mass of S(t) shifted directly to R(t).
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Figure 13: Period by period costs of the pandemic under various policy scenarios.

thus keep cases from-reentering an exponential growth regime. Once the vaccine arrives and
is distributed, the measure of Susceptibles begins to fall and NPIs can be safely progressively
weakened while maintaining low levels of new infections. Finally, activity and output would
return to normal in the fourth quarter of 2021.

6.4 The Costs of the Pandemic

Figure 13 shows the welfare cost of the pandemic, from July 2020 onward, under a variety of
scenarios. Lower values in the figure indicate higher welfare. So that one might see the way
different policies tradeoff the two welfare channels, we decompose the total cost along each
path into the cost of infections and cost of lost output. Relative to the other policy options
we consider, the key feature of the laissez-faire policy is that its relatively modest output
losses are outweighed by its large disease cost, provided that a vaccine is on the horizon or
eradication is possible. Conversely, the other options typically entail somewhat larger output
costs, particularly early on, but with the benefit of large reductions in total infections.

7 Conclusion
In this paper we developed and estimated a spatial model of the joint evolution of eco-
nomic variables and the spread of an epidemic across U.S. counties using high-frequency
granular data. The model predicts a significant endogenous reduction in economic activity
by agents in response to the spread of the virus — highlighting the importance of using
an integrate-assessment model for evaluating policy responses to epidemics. Absent phar-
maceutical advances to vaccinate against or treat the virus, our estimated model predicts a
protracted march towards herd immunity. Infections and deaths continue to increase roughly
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linearly for the next 3 to 5 years, with an ultimate death toll of around 1,250,000.
Lockdowns effectively lower the spread of the virus at the cost of lower economic output —

giving rise to a pandemic possibility frontier. From a welfare perspective, however, lockdowns
are desirable only under two conditions. First, if the policymaker expects a vaccine or cure
to arrive within the next 2-3 years, lives saved from locking down outweigh the output costs.
Second, suppose there is the possibility to curtail community transmission (either through
eradication or management through testing, tracing, and quarantine). In that case, a strict
lockdown for a few months can affect a quick return to pre-pandemic levels of activity.
Policies that lower the rate of transmission (e.g., mask wearing), however, can successfully
raise output and save lives.

One caveat to our conclusions is that we have assumed that individuals receive permanent
immunity to the virus after recovering. Recent medical evidence suggests that reinfection is
rare but possible (albeit in a milder form). While beyond the scope of the current analysis,
temporary immunity would likely increase the welfare benefits of both finding a vaccine and
curtailing community transmission through NPIs.
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A County-Level Data at Daily Frequency
For the empirical analysis and model estimation, we build a panel of daily county-level
observations on two economic variables, two measures of virus spread, and NPIs. While the
economic variables can be measured at even finer geographic granularity, we aggregate each
of them to the county level to match the finest available granularity of the epidemiological
data. We use daily observations from January 1, 2020 through May 24, 2020.

On the epidemiological side, we obtain daily county-level data on confirmed and probable
COVID-19 cases and deaths from the The New York Times.28 The The New York Times
collects this data on a recurring basis from local public health authorities.29 This is with
one exception: the NYT data only records deaths for NYC as a whole, although the Bronx
and Queens are distinct counties. We collect the county-level observations directly from New
York City’s website and add them to our data set.

Our high-frequency economic variables consist of detailed data on both foot traffic and
hours worked. We obtain data on foot traffic to over 3.6 million consumer “Points-of-Interest”
(POIs), including grocery stores, restaurants, hospitals, and an array of other public and
private establishments from SafeGraph Inc. SafeGraph collects the POI data as anonymized
GPS location information from a large panel of more than 45 million smartphones in the U.S.
We view this data as a highly accurate measure of a variable we will refer to throughout the
paper as “economic activity” or just “activity.” Being derived from a panel of smartphones,
the Safegraph data obviously does not represent a random sample of the U.S. population.
However, Squire (2019) investigated potential sources of sampling bias in the SafeGraph
data. The data are well representative at the county level (when compared to U.S. Census
data from the American Community Survey) along a number of demographic dimensions,
such as educational attainment and household income, although very low-income individuals
(less than $10, 000 annual income) tend to be under-represented in the data.30

We obtain hours worked from a large worker-firm matched data set provided by Home-
base. Homebase is a scheduling and time clock software provider. The data consist of daily
time-card records at the establishment level. The time-cards include information on hours
worked and wages. The data are anonymized, but do specify the zip code and industry of
the establishment. The data are provided in real-time when the time cards are reported

28Data from The New York Times, based on reports from state and local health agencies. See https:
//www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html.

29Note that it is unclear in the mortality data if the date corresponds to when the death occurred or when
the death was officially reported. In our model estimation we account for this uncertainty by allowing for
measurement error in recorded mortality outcomes.

30The SafeGraph analysis does not address bias in age sampling, but we suspect that given that the panel
is based on smartphone users that very old households would tend to be under-represented.
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Figure A.1: Average Delay in COVID-19 Death Reporting

by the business that uses the software. As we detail in the appendix, small establishments
and establishments in the food services and retail sectors tend to be overrepresented in the
Homebase data. We refer the interested reader to Kurmann et al. (2020) for a more thor-
ough discussion of the representativeness of the Homebase data and how it compares to the
Quarterly Census of Employment and Wages conducted by the U.S. Census.

Finally, we assemble a detailed daily county panel for NPIs. To do so we use data from
multiple sources, including data made available by other researchers as well as our own
collection efforts using local and national news sources.

Reporting Delays. A few states publicly report the time series of assigned days of death,
in addition to the more commonly available “new deaths.” We use the observed gap between
the two series in some of these states to inform our our choice of reporting delay during
estimation. Figure A.1 shows how the average reporting delay has evolved over time in three
such states.
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NAICS Firms HB Firms QC Wages HB Wages QC Weekly Wage HB Weekly Wage QC
21 0.00 0.01 2,406
22 0.00 0.01 2,641
23 0.08 0.06 1,193
31 0.04 0.12 1,419
42 0.06 0.06 1,612
44 0.14 0.11 0.15 0.07 331 636
48 0.01 0.03 0.01 0.04 363 1,086
51 0.02 0.05 2,506
52 0.05 0.12 2,867
53 0.04 0.02 1,256
54 0.05 0.13 0.04 0.12 336 1,949
55 0.01 0.05 3,001
56 0.06 0.05 834
61 0.04 0.01 0.02 0.02 158 973
62 0.08 0.17 0.06 0.13 282 963
71 0.02 0.02 0.02 0.01 181 712
72 0.37 0.07 0.46 0.04 205 420
81 0.04 0.09 0.02 0.02 313 758
99 0.25 0.02 0.22 0.00 242 1,070

Table 1: Comparison of Homebase and Quarterly Census of Employment and Wages

B Econ-SAIRD Model Details

B.1 Epidemiological Environment

Epidemiological State Transitions. As in Econ-SIR, the S agents contract the virus
at rate n(t). The S category has no inflows from other states and hence the measure of
Susceptibles decreases over time according to

Ṡ(t) = −n(t)S(t). (41)

We now assume that newly infected agents transition to the asymptomatic state. This
feature of the model is consistent with reports that, when initially infected, agents are often
asymptomatic but able to spread the virus for multiple days prior to developing symptoms.
Asymptomatic agents transition to I at rate λ. Furthermore, since many virus carriers never
exhibit symptoms at all, (Russell et al., 2020), we assume that agents in the A state can
recover without ever developing symptoms, transitioning to R at rate γ. The measure A(t)
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thus changes according to

Ȧ(t) = n(t)S(t)− λA(t)− γA(t) (42)

The measure I(t) increases with the inflow of λA(t). As before, I agents recover at rate
δ. We now also assume that I agents die at rate κ. I(t) thus evolves according to

İ(t) = λA(t)− δI(t)− κI(t) (43)

Lastly, the R and D states are absorbing states, with their measures only increasing over
time, as they both have inflows but no outflows.31 With asymptomatic and infected agents
recovering at rates γ and δ respectively, R(t) increases at rate

Ṙ(t) = γA(t) + δI(t). (44)

D(t) grows with the deaths of I agents, and hence

Ḋ(t) = κI(t). (45)

Given the parameters governing epidemiological state transition rates, λ, δ, κ, and γ, as well
as the infection rate of Susceptibles, n(t), equations (41)–(45) characterize the epidemiolog-
ical dynamics in the economic-SAIRD model.

B.2 Activity and Output

Economic Activity. The rate of activity is dictated by the recovered agents and the active
shares of Susceptibles, Asymptomatics, and Infecteds. One can then characterize the rate
of activity either constructively, as in equation (46), or as a deviation from the full activity
rate, as in equation (47):

a(t) = aS(t)
[
S(t) + A(t)

]
+ aII(t) +R(t) (46)

= 1− F (z̄(t))︸ ︷︷ ︸
rate of foregone

excursions by S & A

·
[
S(t) + A(t)

]
− F (z̄I)I(t)−D(t)︸ ︷︷ ︸

missing excursions by
quarantined and deceased

(47)

31We are implicitly assuming that past infection to COVID-19 provides future immunity, at least over the
time horizon relevant to the model estimation and usage.
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Economic Output. Similarly, output can be equivalently characterized either construc-
tively or in terms of shortfall from output when there are no infections:

y(t) =

“no virus”
output rate︷ ︸︸ ︷
E[z(t)] −

[
S(t) + A(t)

]
·

S(t) foregone
excursion rate︷ ︸︸ ︷
F (z̄(t)) ·

value of foregone
excursion︷ ︸︸ ︷

E[z(t)|z(t) ≤ z̄(t)] (48)
− F (z̄I)I(t)E[z(t)|z(t) ≤ z̄I ]︸ ︷︷ ︸

foregone value by quarantined I

− D(t) · E[z(t)]

B.3 Epidemiological Statistics

Once a person enters the Asymptomatic state, their transitions are stochastic but nonetheless
exogenously determined by parameters. This makes it relatively straightforward to calculate
standard epidemiological statistics. For instance, the case fatality rate (CFR), the number
of deaths per confirmed cases, which in our model corresponds to the probability of dying
conditional on reaching the Infected state is

CFR =
κ

δ + κ
(49)

Similarly, the infection fatality rate (IFR), the number of deaths per total cases, which
(somewhat confusingly) corresponds to the probability of dying conditional on reaching the
Asymptomatic state is

IFR =
λ

γ + λ
· CFR =

λ

γ + λ
· κ

δ + κ
(50)

Next we turn to the various reproductive rates. Because there are many time varying quan-
tities in our model (both from endogenous and exogenous sources), it is difficult to express
in closed form how many additional individuals an infected person would expect to infect.
However, we can answer that same question assuming conditions at that time prevailed in
perpetuity. In this case we find

Re(t) = R0 · e(t) · aS(t)S(t) (51)

where we again have R0 = β/δ. Notice that this figure reflects the fundamental reproductive
number R0 as well as contributions from the exursions of Asymptomatic and Infected e(t),
the activity of Susceptibles aS(t), and the share of Susceptibles S(t).
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C Additional Estimation Details

C.1 Initial State

We do not observe the full underlying state of each county at the start of their outbreak.
From the data, we know the initial number of confirmed cases (infected people) and deaths
(generally zero), from which we can set I0 and D0. However, we do not know the number of
asymptomatic or recovered individuals. We assume that R0 = 0 and that A0 is proportional
to I0, with ϝ0 ≡ A0/I0 denoting the ratio between the two.

Identifying ϝ0 from the data is challenging, so, rather than treat it as an additional free
parameter, we derive a theory-driven estimate of it as a function of other model parameters.
Letting ϝ(t) ≡ A(t)/I(t), the law of motion for ϝ(t) is

ϝ̇(t)
ϝ(t) = n(t)

S(t)

A(t)
− λ− γ − λ

A(t)

I(t)
+ δ + κ (52)

= βS(t)

(
aA(t) + aI

1

ϝ

)
− λ− γ − λϝ(t) + δ + κ (53)

In the early stages of an outbreak, S(t) ≈ 1 and aA(t) ≈ aS(t) ≈ 1. Further assuming aI ≈ 0

and imposing stationarity of ϝ(t) ratio yields the estimate

ϝ0 =
β + δ + κ− λ− γ

λ
. (54)

C.2 Parameter Estimates

Table 2 gives the estimates of the model parameters.

D A Historical Counterfactual: No May Reopening
The model makes a variety counterfactuals straightforward to compute.

In Figure D.2 we consider the possibility of continued lockdowns rather the reopenings
implemented around the country in May.
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Model Parameter Value
µ[β] 0.6167
σ[β] 0.3533
µ[ψ] 354.5
σ[ψ] 224.1
λ 0.0527
γ 0.0827
δ 0.0460
κ 0.0006
σ 0.2893
f0 10.024
zi 1.7039
z̄L1 0.8440
z̄L2 0.9028
z̄L3 0.9996
σa 0.1202
σo 0.2116

Table 2: Estimates of model parameters.
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Figure D.2: No May Reopening. Counterfactual path in which lockdown continued indef-
initely versus actual path in which reopening occurred.
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Figure D.3: Decomposing the Role of Technological Trends.

D.1 The Roles of Mitigation and Activity Reduction

The estimated model allows for the possibility that agents have taken two types of precau-
tions over time. First, agents have adopted measures to reduce virus transmission per unit of
activity, modeled via declining βt. The most salient real world example of such β-reducing
measures is perhaps the wearing of face masks, but this mechanism in the model should be
interpreted as also encompassing myriad other measures, such as the installation of plexiglass
barriers at grocery stores, shifting restaurant dining outdoors, and simple six foot social dis-
tancing. Second, agents have increased their use of services that allow consumption with less
infection risk, namely delivery options for a variety of goods, modeled via the z-substitute
option. Here we consider the counterfactual in which these measures had not taken place.32

Figure D.3 shows the model’s predicted evolution of the main variables in the absence of
these trends.

32This is straightforward to implement by setting βt = β0 for all t.

46



ONLINE APPENDIX
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Figure E.4: Strong temporary lockdown with and without eradication zone.

1



Oct Jan
2021

Apr Jul
0

200

400

600

800

Daily cases per million

Oct Jan
2021

Apr Jul
0.0

2.5

5.0

7.5

10.0

12.5
Daily deaths per million

Oct Jan
2021

Apr Jul
0

20

40

60

80

100
Economic activity (%)

Oct Jan
2021

Apr Jul
0

20

40

60

80

100
Economic output (%)

Figure E.5: Laissez-Faire until herd immunity—One year horizon. Red lines are
population-weighted means, thick blue lines are for the median county, and the blue shaded
bands indicate percentiles of the cross sectional distribution of counties.
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Figure E.6: Forward looking PPF under adaptive lockdown policy: weak eradication zone.
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Figure E.7: Counterfactual PPF under adaptive lockdown policy: (a) without eradication,
(b) with weak eradication zone, and (c) with strong eradication zone.
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